On Secular Resonances of Small Bodies in the Planetary Systems
نویسنده
چکیده
We investigate the secular resonances for massless small bodies and Earth-like planets in several planetary systems. We further compare the results with those of Solar System. For example, in the GJ 876 planetary system, we show that the secular resonances ν1 and ν2 (respectively, resulting from the inner and outer giant planets) can excite the eccentricities of the Earth-like planets with orbits 0.21 AU 6 a < 0.50 AU and eject them out of the system in a short timescale. However, in a dynamical sense, the potential zones for the existence of Earth-like planets are in the area 0.50 AU 6 a 6 1.00 AU, and there exist all stable orbits last up to 10 yr with low eccentricities. For other systems, e.g., 47 UMa, we also show that the Habitable Zones for Earth-like planets are related to both secular resonances and mean motion resonances in the systems.
منابع مشابه
The Secular Evolution and Dynamical Architecture of the Neptunian Triplet Planetary System Hd 69830
We perform numerical simulations to study the secular orbital evolution and dynamical structure in the HD 69830 planetary system, using the best-fit orbital solutions by Lovis and coworkers. In the simulations, we show that a triplet Neptunian system is stable for at least 2 Gyr and that the stability would not be greatly influenced even if we varied the planetary masses. In addition, we employ...
متن کاملThe Role of Resonances in Astrodynamical Systems
This review intends to highlight the importance of resonances of the orbits of planets and asteroids in our Solar System. Besides the well known 5:2 mean motion resonance between Jupiter and Saturn, we discuss how secular resonances act, where the motions of the longitudes of the perihelia and/or the longitudes of the nodes are involved. Resonances are especially important for the motions of sm...
متن کاملExtrasolar Planetary Dynamics with a Generalized Planar Laplace-lagrange Secular Theory
The dynamical evolution of nearly half of the known extrasolar planets in multiple-planet systems may be dominated by secular perturbations. The commonly high eccentricities of the planetary orbits calls into question the utility of the traditional Laplace-Lagrange (LL) secular theory in analyses of the motion. We analytically generalize this theory to fourth-order in the eccentricities, compar...
متن کاملHigh-resolution Simulations of the Final Assembly of Earth-like Planets 1: Terrestrial Accretion and Dynamics
The final stage in the formation of terrestrial planets consists of the accumulation of ∼ 1000-km “planetary embryos” and a swarm of billions of 1-10 km “planetesimals.” During this process, water-rich material is accreted by the terrestrial planets via impacts of water-rich bodies from beyond roughly 2.5 AU. We present results from five high-resolution dynamical simulations. These start from 1...
متن کاملAnalytical treatment of planetary resonances
An ever-growing observational aggregate of extrasolar planets has revealed that systems of planets that reside in or near mean-motion resonances are relatively common. While the origin of such systems is attributed to protoplanetary disk-driven migration, a qualitative description of the dynamical evolution of resonant planets remains largely elusive. Aided by the pioneering works of the last c...
متن کامل